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Abstract

We discuss a branch and bound algorithm for set covering, whose centerpiece

Is an integrated upper bounding/lower bounding procedure called dynamic

subgradient optimization (DYNSGRAD), that is applied to a Lagrangean dual

problem at every node of the search tree. Extensive experimentation has shown

DYNSGRAD to represent a significant improvement over currently used techniques.
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1. Introduction

We address the set covering problem

(SC) min{cx : Ax a 1, x c {0,1}'),

where A is an mxn matrix of O's and l's, c is an integer n-vector, and 1 is the

m-vector of I's. We denote M :={I ... m}, N := {, ... ,n}, and N = {j c N

aij = I}, i c M, Mj := {i £ M : aij = 1}, j c N.

Using standard terminology, we call the support of a feasible integer

solution x to (SC) a cover. A cover is called prime if it contains no redundant

columns. To simplify the terminology, x itself will often be called a cover.

Our approach belongs to a family of branch and bound procedures for (SC)

whose main characteristic is that at every node of the search tree, instead of

using the simplex method to solve the linear programming relaxation of the given

subproblem, it uses some combination of primal and dual heuristics with

subgradient optimization applied to a Lagrangean dual, possibly incorporating

cutting planes, to generate upper and lower bounds on the objective function

value.

Various elements of this approach have been around for about 15 years.

Etcheberry [77] seems to have been first to use subgradient optimization instead

of the simplex method. Balas and Ho [801 tested various Lagrangean relaxations,

some of them including cutting planes, and introduced several primal and dual

heuristics combined with variable fixing techniques, as well as some new

branching rules. Their algorithm and its computational performance served as a

benchmark for subsequent developments in the 80's. Hall and Hochbaum [83]

extended the approach to more general covering problems (right hand side greater

than one). Vasko and Wilson 184] Introduced an efficient randomized version of

the greedy heuristic. Carrera [84] performed a thorough computational study of

primal heuristics,' including the randomized greedy and reduced cost heuristics.

Beasley [871 implemented a branch and bound algorithm using the Balas-Ho
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framework, but solving the linear programming subproblems by the simplex method

and using some new variable fixing rules. In a later paper, Beasley [90]

introduced a Lagrangean heuristic that generates a cover after every subgradient

iteration. Fisher and Kedia [90] use an efficient dual heuristic as the main

ingredient of their approach. For some recent work on set covering algorithms

based on other approaches, see Harche and Thompson [89] and Nobili and

Sassano [91].

The centerpiece of the approach discussed in this paper is an integrated

lower bounding/upper bounding procedure that we call dynamic subgradient

optimization (DYNSGRAD) and that we apply to a Lagrangean dual problem at every

node of the search tree. This procedure intertwines the iterations of

subgradient optimization, a lower bounding procedure, with applications of the

reduced cost heuristic (RCH), a primal, i.e. upper bounding procedure (which

however, as a byproduct, also improves the lower bound), followed by variable

fixing applied in a recursive fashion. Whenever RCH Improves the upper bound,

the current dual vector (set of Lagrange multipliers) is changed, along with the

upper and lower bounds; and whenever some variable is fixed at 1, the constraint

set of the Lagrangean problem itself changes, and the parameters of the

subgradient procedure are adjusted: hence the qualifier "dynamic" in the name of

the procedure.

Other new features of our algorithm Include some primal and dual

heuristics, a recursive variable fixing procedure, and new branching rules.

Our procedures have been extensively tested, both on randomly generated and

on real world problems. As a stand-alone heuristic, the dynamic subgradient

procedure compares favorably with all other heuristics known to us in terms of

the quality of solutions obtainable with a certain computational effort. As a

new ingredient of our branch and bound procedure, it has drastically improved

the performance of the latter as compared to Its older version which uses at
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every node the standard subgradient optimization procedure. It also compares

favorably with other branch and bound procedures.

Our paper is organized as follows. We start by introducing the formulation

that we use for our Lagrangean dual (Section 2). Next we briefly review the

standard subgradient optimization procedure (SUBGRAD) as it applies to this

Lagrangean dual (Section 3). A dual heuristic is described next, for making the

vector of Lagrange multipliers into a feasible dual solution without weakening

the lower bound that it provides (Section 4). We then review some primal proce-

dures and show why the reduced cost heuristic (RCH) is the best candidate to be

used with DVNSGRAD (Section 5). Next we describe our recursive variable fixing

procedure (Section 6), and finally state and discuss the dynamic subgradient

procedure itself (Section 7). This is followed by a discussion of our two

branching rules and the overall branch and bound procedure (Section 8). Compu-

tational experience both with DYNSGRAD as a stand-alone, and the dynamic sub-

gradient-based branch and bound procedure (Section 9) concludes the paper.

2. The Lagrangean Dual

The Lagrangean dual to which we apply our procedure is

maxL(u)
uýO

where

L(u) := ul + min I(c - uA)x : E(x: j c Ni) 2 1, i c R}.
xC{O, 1in

Here H c M Is the Index set of a maximal subset of disjoint (i.e. pairwise

nonoverlapping) inequalities of the system Ax k 1, A is the matrix obtained from

A by deleting the rows indexed by H, and u Is a vector indexed by M\M. For

given ut, we denote by Y(ut) the minimization problem in x associated with ut,

i.e. the problem that needs to be solved to calculate the value of L(ut).
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This Lagrangean should be contrasted with the simpler one often used in its

place, In which all of the constraint set Ax t I is taken into the objective

function and the Lagrangean subproblem to be solved at every iteration has no

other constraints than xj c {f,01, j c N. We have tested both versions and

although the differences were not drastic, we found the version that we decided

to use more reliable and converging somewhat faster.

3. Standard Subgradient Optimization

To establish a framework for discussing our dynamic subgradlent procedure,

we first describe the standard subgradient optimization procedure (SUBGRAD) as

it applies to the above Lagrangean dual of a set covering problem. The jth

column of A Is denoted aj, and the solution to 2(u) for a fixed u is x(u). We

start with upper and lower bounds zu and ZL on the value of L(u), a vector u,

and a set of disjoint constraints indexed by H. We also need to specify a

starting value (taken to be 2) for the parameter A used to define the step

length a, the number k of iterations with no improvement in the lower bound

after which A is reduced (halved), and values of the parameters used with the

stopping rules, namely c (stop if a < 0), 6 (stop if the norm of the subgradient

is less than 8) and 9 (stop if the number of iterations exceeds M).

This procedure, like others to follow, is stated in mock PASCAL, with

comments in braces. Text in italics summarizes steps that don't need further

elaboration or will be elaborated later.

procedure SUEGRAD

input: c, A, H, zu, ZL, u; A, k, c, 6, Q

output: {improved} ZL, Ut

begin

No := N, t := 1, ut := u {initialize}

while z, > ZL do {solve 2(ut) and define ut+÷}

for I c H do fcover optimally the rows in M}
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Ck - Utk min(cj - utij j c N,)

Xk(ut) := 1, No := N°\(k)

endfor

for J c NO do fassign values to remaining xj(ut)}

if cj s utaj then xj(ut) := 1

else xj(ut) 0

endfor

L(ut) := utl + (c - utbx(ut)

ZL := max{ZL,L(u t ))

for I c M\M do (compute subgradient}

gj(ut) := 1 - E(xj(ut) j c N1 )

endfor

if ZL unchanged for k Iterations then

A X/2

endif;
rt := A(Zu - ZL)/Ig(ut)l 2 (compute step length wt}

if a-t < c or I1g(ut)Jl < .5 or t > Q then

stop

endif

for I c M\M do (update u1}

U•+1 imax(O,ui + a-tgi(ut))

endfor;

endwhile

end.

The main advantage of subgradient optimization over the simplex method (or,

for that matter, an Interior point method), is its low computational cost. It

is the common experience of users of this approach that the number of iterations

required for convergence does not depend on problem size. What exactly It

depends on, besides of course the formulation of the Lagrangean itself, is not

well understood. It differs between problem classes, but within the same class

there Is no evidence of any dependence on problem size. On our rather diverse

set of test problems, the number of iterations tended to be around 2-300 and

only on very rare occasions did it exceed 400. A different set of stopping
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rules may of course change these numbers; in particular, the intervals at which

the size of A is reduced do influence the number of iterations. But this is not

the point: rather it is that these numbers do not seem to depend on problem

size. Accordingly, after having fine tuned the procedure for a class of prob-

lems, i.e. chosen appropriate values for its parameters, one may want to limit

the number of iterations, as we did in the above outline, to some constant Q

independent of problem size. With this in mind, and denoting by q the number of

nonzero entries of A, the complexity of solving the current subproblem 2(ut) is

O(n), that of computing the subgradient is O(q), and that of updating u is O(m);

all of which yields a complexity of O(q) for the whole procedure.

4. Dual Heuristic

When the subgradient optimization procedure stops, the dual vector ut may

or may not be feasible (i.e. satisfy utA : c), even though

L(ut) := utl + (c - utA)x(ut) is a valid lower bound. Several of the procedures

that we will use, however, require as their starting point a feasible dual

vector. It is therefore an important fact that there exists a simple procedure

for making ut feasible without weakening the associated lower bound.

The procedure for doing this (DUALFEAS) consists of the following. Let

so =cj - uaj, j c N. For every column j with sj < 0, decrease the dual vari-

ables ui, i c Mj\R, one after the other, until the total decrease equals -sj.

Then update all reduced costs to account for the changes in u. This makes all

reduced costs nonnegative. To assign a value to the components indexed by M,

for each i c R set ut equal to the smallest reduced cost over Nj. The details

follow.

procedure DUALFEAS.

input: ut k 0 {infeasible}

output: u x 0 {feasible}
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begin

u := u , s := c - utA finitialize)

for J c N such that sj < 0 do

while sj < 0 do

choose i c Mj\M

if sj < -u1 then {update st, t c Ni and decrease uj}

for I c N, do
St :=Sp + U!

endfor
U, := 0

Mj :--- Mj\(i}

else idecrease last ul and update sj, t c Nil

U1  Ui + Sj

for I c N1 do

Sj S't - Sj

endf or

endwhile

endfor

for I c M do {assign values to u1 , I c R)

Sk mln(sj : j c Ni)

Ui Sk

endfor

end.

Proposition. The procedure DUALFEAS produces a vector u a 0 such that

uA s c and

V(uj : i c M) & E(ut : c c M\R) + E(cj - utij)xj(ut)(= L(ut))

Proof. Clearly, u1 i 0, 1 c M. Since for each j such that cj < utaj the

relevant components of ut are decreased until cj t uaj, and the components of u

for I c M are set so as to preserve these Inequalities, u satisfies s :=

c - uA x 0. To prove the last Inequality of the Proposition, we rewrite It in

the form

EZuT - u,:i c£mM) + Z(st:st < 0) S Z(u,:i cR) - Z(min{s':j c Nil : I cN),

where st := c - utA and s' := c - uA.
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We claim that the left hand side of this inequality is nonpositive, while

the right hand side is nonnegative. To prove the first claim, we note that

every time some ut is decreased by an amount, the same amount gets added to at

least one st such that st < 0. Therefore

ENT - u, : I c MF)S -~sý : sý< 0).

The second claim is true because each ui, i £ M, is assigned the value

min{s' j c N1} during the procedure, and s' 2 sj for all j.o

The complexity of DUALFEAS is easily seen to be O(q).

S. Primal Heuristics

The Dynamic Subgradient Procedure to be introduced below interrupts the

standard subgradient procedure at certain iterations and uses a primal heuristic

to extend the support of the solution x(ut) of the current problem V(ut) to a

cover for (SC). The rationale behind this is that producing "on the fly" a

large number of near-optimal covers is a computationally cheap way of increasing

the chances of success in the overall search for a good solution. Next we take

a brief look at the primal heuristics that could be candidates for use within

such a dynamic SGD. We discuss these heuristics as they apply to (SC), i.e. to

the original constraint set Ax t 1 rather than Ax 2 1.

The best known primal heuristic is the greedy, which builds a cover sequen-

tially, by adding at every step a column for which some function f of the cost

cj and the number kj of new rows covered by column j attains its minimum.

The complexity of the greedy heuristic is O(Cq), where C is the cardinality

of the cover. In terms of the problem data, this is 0(mq). Since in most cases

the cardinality of a cover is much smaller than m, the greedy heuristic is fast

and so one can run it with several different functions f(cj.kj) and choose the

best solution obtained. Balas and Ho [80] used five functions as column selec-

tion criteria, namely cj, cj/kj, cJ/log 2kj, cj/kjlog2kj and cj/kjlnkj. Vasko
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and Wilson [841 used these same functions plus two others, cj/k? and Cj /2k.

Their randomized greedy heuristic selects the column to be added to the cover

at every step by randomly choosing some function f(cj,kj) from a specified pool

of such functions. The randomized greedy heuristic can be run repeatedly for as

long as improved solutions are found. Of course, there is a break-even point

between the increasing marginal cost of another run and the decreasing marginal

benefit from such a run, as the discovery of improved solutions becomes less and

less likely. The experience of Vasko and Wilson [84], confirmed by Carrera

[84], was that 30 runs is under most circumstances a reasonable choice.

The computational experience of both Vasko and Wilson [84] and Carrera [84]

was that the randomized greedy heuristic, run 30 times, while computationally

several times as expensive as running the greedy with each of the functions

f(cj,kj) and choosing the best solution, performs consistently better than the

latter approach.

A heuristic based on a somewhat different philosophy than the greedy, uses

information about the reduced costs (in the linear programming sense) provided

by a feasible (not necessarily optimal) dual solution, in constructing the

(primal) cover. We call a feasible dual solution u maximal, if no component ui

can be increased without decreasing some other component or making u infeasible.

The reduced cost heuristic (RCH) introduced by Balas and Ho [80], is based on

the simple observation that if the columns with zero reduced cost do not form a

cover, then the dual solution is not maximal; in particular, the dual variable

associated with an uncovered row can be increased. Such an increase in turn

drives to 0 a new reduced cost, and the corresponding column can be added to the

cover. Iterating this produces a full cover x, as well as a maximal dual u.

Thus as a byproduct to generating a cover, the reduced cost heuristic also

improves the dual solution used to start it.
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procedure RCH

input: c, A, feasible u

output: x icover}, maximal u

begin

s := c - uA

for J c N do

if sj = 0 then xj := 1 else xj := 0

endfor;

for i c H do

If E(xj j c Ni) < 1 then

sk min(sj j c Ni)

Ui Ui + Sk

for j C N1 do

Sj : = Si Sk

if sj = 0 then xj I

endfor

endif

endfor

reduce x to a prime cover

end.

The computational complexity of RCH is O(q), better than that of the greedy

heuristic, and in practice RCH is considerably faster than the latter.

As to the quality of solutions, Carrera [841 found the covers generated by

RCH better than those obtained by the greedy heuristic with any of the functions

f(cj,kj) used as selection criterion.

The fact that, along with a (primal) cover, RCH also produces an improved

dual solution, eminently qualifies It for use In DYNSGRAD. Further, If we

slightly generalize RCH by allowing it to start with some of the reduced costs

sj being negative and replacing the requirement sj = 0 in the first do loop by

sj s 0, then applying RCH to (SC) with the starting dual vector u defined by

uf = ut, I c M\M, and ul = min {sj j c Nil, I c M, produces at the end of the

first do loop a partial cover identical to the solution x(ut) of the Lagrangean
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subproblem V(ut) solved by SUBGRAD. So it is only natural to take this partial

cover and complete it by applying RCH starting with the second do loop. This

modified/truncated RCH is our Embedded Reduced Cost Heuristic (ERCH).

procedure ERCH

input: c, A, F, ut, x(ut), st

output: x {cover}, u

begin

U := U , X := x(ut), s := st Oinitialize}

for i £ M do

if i £ 9 or Z(xj j £ N1 ) < 1 then

Sk =mintsj j c N1)

Ui Ui + Sk

for j e N1 do

Sj := Sj- Sk

if sj = 0 then xj := 1

endfor

endif

endfor

reduce x to a prime cover

end.

As mentioned above, the vector x(ut) found by SUBGRAD is identical to the

partial cover generated by the first do loop of RCH if applied to (SC) with the

starting dual vector chosen in a certain way. ERCH completes this partial cover

by executing the second do loop of RCH. However, we have found it useful to

alternate this procedure with another one that completes the partial cover

corresponding to x(ut) by using a version of the greedy heuristic. We call this

the Embedded Reduced Cost/Greedy Heuristic (ERCGH).

procedure ERCGH

input: c, A, x(ut)

output: x (cover}

begin
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x x(ut) (initializel

R (i v M E(xj j c N1) < 1i) identify uncovered rowsl

while R * 0 do

ck/IR n] Mk := mi (cjlR n Mjj j c N, xj = 0)

Xk 1

R R\Mk

endwhile

reduce x to prime cover

end

At any point in the subgradient procedure, the current dual vector ut may

not be feasible. Whenever ERCH (or ERCGH) finds an improved cover, making ut

feasible by DUALFEAS and then applying RCH to the full constraint set Ax 2 1 is

computationally inexpensive and in our experience often yields an improved

solution, and leads to additional variable fixing.

6. Recursive Variable Fixing

Whenever ERCH is called to extend a partial solution x(ut) to a full cover,

the result may be a reduction of the integrality gap ZU - ZL. If this is the

case, a natural followup is to fix at 0 all those variables xj whose reduced

cost sj, plus the improvement Aj in the value of ul obtainable by fixing xj at

1, exceeds this gap. Furthermore, since the costs cj are integer but ZL, Sj and

Aj may be fractional, xj can be fixed at 0 if rZL + Sj + Aju 2 Zu. Since

Aj s cj - sj, in order to avoid spending an unnecessary effort on computing Aj,

we first check whether rZL + CJi a zu, and only if this is the case do we calcu-

late Aj.

The fixing of variables at 0 may reduce the size of some N1 to 1, i.e.

create some rows with a single nonzero entry. Clearly, if this entry occurs in

column k, xk can be fixed at 1. Fixing xk at 1 requires the removal ("flag-

ging") of all rows i C Mk and the updating of the reduced costs. This in turn

12



may allow for some dual variables to be increased, and if this happens and as a

result the Integrality gap is again reduced, a new cycle of variable fixing can

be started. Our routine which implements this cycle of variable fixing and

associated updating of dual variables and reduced costs is called Recursive

Fixing (RECURFIX).

procedure RECURFIX

input: c, A, cover x',zu = cx', feasible u, ZL = Ul

output: xj's fixed (at 0 or 1), maximal u, improved Zu, ZL

begin

z =, z 0 := , s := c - uA {initialize}

while Zu < z0 or ZL > zL or sj > sq for some j do
0 0 0zu := ZU, Z:= ZL, S := s;

for all j c N do

if rZL + Cji 2 zu then {temporarily fix xj at 1}

U := U, S := S

for i c Mj do {update U and s}

if u, > 0 then

for t c Nj do

if s, = 0 then mark rows i c MH

endif

S't Sp+ Ul

endfor

ii = 0

endif

endfor

M := M\Mj

call DUALMAX with u u {rmake u maximal}

Aj := i(uj - Uj : i C Hj)

if FzL + sj + AJi1 Zu then

fix xj at 0;

for 1 c Mj do {update Nj)

N, := N,\J

endfor

endif

endfor

13



for all i c M do

if jNfl = 1, Ni = (i}, then

fix xj at 1

for I c Mj do {update u and s}

if u1 > 0 then

for t c Ni do

if s, = 0 then

mark rows I c M,

endif

Sl ::= SA + Uj

endfor

U1 = 0

endif

endfor

M := M\Mj {"flag" rows in Mi}

endif

endfor

call DUALMAX (make u maximal}

F1 := (j c N : xj is fixed at I or x' = 1 and xj is not fixed)J
complete F1 to a cover x

if cx < zu then

ZU := CX

endif

endwhile

end

The routine DUALMAX called after fixing a variable at 1 and updating the

reduced costs, serves the purpose of increasing those components of u for which

this has been made possible by the updating (augmentation) of some reduced

costs. This routine is also called on other occasions, which is the reason for

stating it as a separate entity.

procedure DUALMAX

input: c, A, M, feasible u, MH (set of marked rows)

output: maximal u

14



begin

for i c M do {make u maximal)

if s, > 0 for all I c N, then

Sk min(s, c : N1)

Ui U 1 + Sk

for I c N1 do (update reduced costs)

S S.9S -Sk

endfor

endif

endfor

end.

We count the cycles of the recursive fixing procedure by the number of

variables that are fixed at 1. Of course, during a cycle several variables may

be fixed at 0. If Z is the set of these variables and k is the index of the

variable fixed at 1, it takes O(n + qz) time to fix all those variables that can

be fixed at 0 during on cycle, where qz is the number of nonzero entries in the

columns indexed by Z. Further, it takes 0(m + qk) time to fix xk at 1 and

update the reduced costs, with qk denoting the number of nonzero entries in the

rows covered by column k. Finally, DUALMAX is O(q). We conclude that the

complexity of a cycle of RECURFIX is O(q).

7. Dynamic Subgradient Optimization

We are now almost ready to state the Dynamic Subgradient procedure in its

entirety. Before we proceed with this, however, there are a couple of issues to

be settled.

The first question has to do with the fact that if one of the primal heur-

istics finds an improvement in the upper bound zu, this produces a sudden de-

crease in the gap Zu - ZL, and hence in the step length ot. If the recursive

fixing procedure is successful, this decrease in vt is even sharper. Our exper-

ience has been that this leads to a premature stopping of the subgradient proce-

dure. To counteract this effect, every time there is a change in the upper
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bound zu we readjust upwards the step length parameter A in order to compensate

for the decrease in zU - ZL. To be specific, after every change in zu we rede-

fine A as
1g~u t)II

A min {2, max {I - •-g g - 1"

The effect of this is that, if the maximum of the two expressions in the

inner brackets Is attained for the second one, and the latter does not exceed 2,

then at = mt-' i.e. the new step length is going to be the same as the one in

the previous iteration. If, on the other hand, the maximum is attained for A --

which can happen if the decrease in the gap Zu - ZL Is offset by a decrease in

Jg~u)J2 -- then A remains unchanged. It has been our experience that this

readjustment of A accomplishes what it is meant for, I.e. it eliminates the

above mentioned premature stopping.

The second question is how often during the subgradient optimization

procedures should the embedded primal heuristics be called. Here there are

obvious tradeoffs, In that more frequent calls of the heuristics produce better

solutions, but at a higher computational cost. We are using two versions of the

Dynamic Subgradient procedure.

Version 1, stated below, calls ERCH only after the parameter A has under-

gone at least two reductions, i.e. A < 1, and only after those iterations that

produce an improvement In the lower bound. This second criterion is motivated

by our empirical observation that ERCH tends to have a markedly better perfor-

mance when the dual solution It Is given as input is of good quality.

Version 2 differs from Version 1 In that it calls an embedded primal

heuristic at every iteration t (for t a 5), and it alternates between calling

ERCH and ERCGH. Also, Version 2 reduces the value of A less frequently than

Version 1.
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procedure DYNSGRAD

input: c, A, I, Zu, ZL, U; A, k, c, 6, 0

output: {improved} ZL and zu, xj's fixed (at 0 or 1), x, ut

begin

a := 0 initialize}

while Zu > rZLl do

solve L(ut) (find x(ut)}

if L(ut) > ZL then

ZL L(ut), a 1

endif

if ZL unchanged for k iterations then

A := A12

endif

compute subgradient g(ut)

if a = 1 and A < I then

call ERCH {make x(ut) into a cover x}

if cx < Zu then

Zu :ý CX

call DUALFEAS (make ut feasible}

call RCH {find new x and u}

Zu := min(zu,cx), ZL := max(zL,UlJ

call RECURFIX {try to fix variables)

update I {find set of disjoint constraintsl

define ut from u

solve L(ut) (find x(ut)}

update ZL

compute subgradient g(ut)

adjust A

endif

a := 0

endif

if at < c or Ig(ut)l < a or t > 0 or N1 = o for some i c M then

stop

endif

compute step length at

for i c M\R do {update u1l

U" ui + Otgi(ut)

endfor
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endwhile

end.

The following are typical values of the parameters we use with DYNSGRAD:

starting value for A = 2

k (the number of iterations without improvement in ZL after which X is

halved) = 7 (Version 1), 30 (Version 2)

c (threshold value for mt, stopping parameter) = 0.0001 at the root

node of the search tree, 0.001 at subsequent nodes.

6 (threshold value for jg(ut)J[, stopping parameter) = 0.000001

0 (threshold value for number of iterations, stopping

parameter) = 1,800

There remains a last question to be addressed. The standard subgradient

procedure, as stated In Section 3, Is known to have certain convergence proper-

ties: if the upper bound Zu is "close enough" to the value of an optimal solu-

tion to max{L(u) : u i 0}, then ut converges to such an optimal solution. The

question Is, will the modified procedure still have this property? To answer

this question, we note that between any two changes in the value of Zu, the

procedure essentially reduces to the standard SUBGRAD: although ERCH may be

called, its running has no consequences if the cover it finds does not improve

on Zu. Further, the number of tImes Zu changes Is bounded by Zu - ZL, i.e. is

finite, since Zu Is Integer. Hence DYNSGRAD preserves the convergence proper-

ties of SUBGRAD. Further, since any interruption in the standard subgradient

Iterations is accompanied by the replacement of zu with a value that is smaller,

I.e. closer to max{L(u) : u t 0}, the effect of these interruptions should be a

speedup of convergence. Our computational experience bears this out.

As to the complexity of DYNSGRAD, the standard SUBGRAD Is O(q); each of the

routines ERCH, DUALFEAS and RCH Is O(q); and each cycle of RECURFIX is O(q).

hence the complexity of DYNSGRAD with a constant number of cycles of RECURFIX Is
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O(q). On the other hand, if the number of cycles of RECURFIX is allowed to

increase with n, the complexity becomes O(nq). In practice, the number of

cycles of RECURFIX is typically between 1 and 4 and we observed no increase in

this number with the increase of n.

8. Branch and Bound

We now turn to the embedding of the Dynamic Subgradient Procedure into a

branch and bound algorithm. We use a breadth first search strategy, i.e. we

keep the active subproblems in a priority queue and examine them in order of

increasing lower bound value. At the start, we apply primal and dual greedy

heuristics to the initial problem P 0 in order to find feasible solutions x and u

with associated bounds zu and ZL, and try to fix at 0 or 1 as many variables as

possible. At subsequent nodes of the search tree these steps are skipped.

We then construct the Lagrangean dual by choosing a maximal set of disjoint

constraints, and call the Dynamic Subgradient Procedure. This is the main

engine of our branch and bound algorithm, and it does one or several of the

following things: improves the lower bound zL; improves the upper bound zu;

fixes some variables at 0 or 1. When command is returned to the main program,

the procedures DUALFEAS, RCH and RECURFIX are called in succession to make the

dual solution feasible, to attempt to find a better cover, and to recursively

fix as many variables as possible. The resulting partial cover is then complet-

ed to a full cover.

At this point, if the lower bound equals the upper bound, the current

subproblem is discarded and a new one is chosen from the priority queue. Other-

wise, we branch.

The branching rule used with the algorithm creates two new subproblems such

that with a high probability there will be an improvement in the lower bound

for both subproblems. This is accomplished by the following two rules, which
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are applied in a hierarchical fashion, i.e. the second rule is used when the

first one is not applicable.

Rule 1. (Column Branching) Let No:= {J c N: sj = 0}, and let J be the

set of those j c No that cover at least one row i with ul > 0, not covered by

any other column in No. Such columns may or may not exist. If they don't, i.e.

if J = o, rule 1 is not applicable. Otherwise choose for branching a column

k c J, and fix Xk at 0 on the left branch and at 1 on the right branch. As to

the choice of k within J, we select k c J such that the set Nj for some I C Mk

contains a maximal number of columns with zero reduced cost.

The rationale for this rule Is as follows. On the left branch, where Xk is

fixed at 0, the dual variable ui corresponding to the row i such that N, n No=

{kJ, can be Increased without changing the other components of u, which improves

the lower bound. On the other hand, on the right branch, where Xk is fixed at

1, all the rows of Mk are eliminated (flagged) and for each I c Mk such that

ui > 0 the reduced costs of all k c N, are Increased. If some of these reduced

costs were 0, the fact that they become positive may permit the increase of some

components of u and thereby of the lower bound. Thus the choice of k within the

set J by the criterion described above alms at having on the right branch as

many 0 reduced costs augmented as possible.

Rule 2. (Row Branching) Let r c M be a row with a minimum INj n N01 among

all those rows I such that some column t c N1 has positive reduced cost sj.

Then on the left branch fix at 0 those xj with j c N, such that sj = 0, and on

the right branch replace the inequality indexed by r with the tighter inequality

E(xj : J N, and sj = O) • 1. On the left branch the dual variable u, can be

Increased, and hence the lower bound strengthened, since the new set N, will

contain no column with 0 reduced cost. On the right branch such an Increase is

not guaranteed, but the tightening of the constraint Indexed by r may produce

it, and the choice of r is meant to maximize this tightening.
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As soon as we create the two branches, we compute a lower bound ZL for each

subproblem, by marking the appropriate rows and calling DUALFEAS. Subproblems

for which ZL t Zu are discarded, the others are added to the priority queue.

The procedures implementing the two branching rules follow. Let Q stand

for the priority queue which contains the active subproblems Pi ordered accord-

ing to nondecreasing lower bound z4. The current subproblem is denoted Pt.

procedure BRANCHI

input: c, A, H, Zu, ZL, feasible u, No, Q, Pt

output: 0, 1 or 2 new subproblems

begin

J := o (initialize)

for J c No do

for i c Mj do

if u1 > 0 and IN, n NOI = 1 then

J := J u (j)
return

endif

endfor

di := max{IN, A N°[ : i c Mj, ul > 0)

endfor

if J * o then

dk = max(dj J c J)

open subproblem Pt,

fix Xk at 0

compute z4 (lower bound)

end

open subproblem Pt 2

fix xj at I

compute z2 {lower bound)

end

for a = 1,2 do

If 'Z•l k zu then discard Pt.

else insert Pt, into Q
endfor
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endif

end.

procedure BRANCH2

input: c, A, R, Zu, ZL, feasible u, s, No, Q, Pt

output: 0, 1 or 2 new subproblems

begin

IN, n MN : min (IN1 n NOI :i c M and Nj\N0  o )
open subproblem Pt,

for j C Nr do

if sj = 0 then

fix xj at 0

endif

endfor

compute z• flower bound)

end

open subproblem Pt2

for j £ Nr do

if sj > 0 then

change arj = I to arj = 0

endif

endfor

compute zL {lower bound)

end

for a = 1,2 do

if rz"L a zu then discard Pt,

else insert Pt, into Q

endfor

end.

We are now ready to give an overview of the branch and bound algorithm as a

whole. We denote by Q the priority queue of active subproblems, and by Po the

starting subproblem.
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procedure BR&BND

input: c, A

output: x (optimal cover}

begin

Zu:=W, ZL := 0, Q := (Po) {initialize}

while Q * o do

remove from Q the next subproblem Pi

if I = 0 then

use primal and dual heuristics to find x, u, Zu and ZL

call RECURFIX {try to reduce problem size)

endif

construct Lagrangean dual (find disjoint constraint set M}

call DYNSGRAD {find new u, ZL, X, ZU}

call DUALFEAS {make u feasible)

call RCH {find new x1

call RECURFIX (try to reduce problem size)

complete x to a cover

if [ZLl 2 zu then discard Pi and return

else

call BRANCHi (try to do column branching)

if no branching variable found then

call BRANCH2 (do row branching)

endif

endif

endwhile

end

We use two versions of BR&BND; they differ among each other in that

Version I of BR&BND uses Version 1 of DYNSGRD, whereas Version 2 uses Version 2

of DYNSGRD.

9. Computational Experience

Our procedures were tested on 86 large, mostly sparse set covering prob-

lems. Table 1 describes the first 60 test problems, which were randomly gener-

ated. The first 25 of these problems are from Balas and Ho [801, the next 10
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Table 1. Randomly Generated Data Sets
cli C [1,1001

Number of Number of: Cost
Problem Set Problems Rows Columns Density Range

=0

BH4 10 200 1000 2% [1,100]
BH5 10 200 2000 2% [1,100]
BH6 5 200 1000 5% [1,100]

BC1 5 200 1000 lo% [1,100]
BC2 5 300 5000 2% [1,100]

BeA 5 300 3000 2% [1,100]
BeB 5 300 3000 5% [1,100]
BeC 5 400 4000 2% [1,100]
BeD 5 400 4000 5% [1,100]

BeE 5 50 500 20% [1,11*

*unlt costs
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Table 2. Real World Data Sets

Number of Number of Cost
Problem Rows Columns Density Range

AA02 106 9444 4.05%
AA03 106 8661 4.05%
AA04 106 8002 4.05%
AAO5 105 7435 4.05%
AA06 105 6951 4.11%
AA07 105 6526 4.11%
AA08 106 6142 4.05%
AA09 104 5810 4.16%
AAIO 106 5511 4.06%

AAMl -71 4413 2.53%
AA12 272 4208 2.52%
AA13 265 4025 2.60%
AA14 266 3868 2.50%
AA15 267 3701 2.58% [35,29661
AA16 265 3558 2.63%
AA17 264 3425 2.61%
AA18 271 3314 2.55%
AA19 263 3202 2.63%
AA20 269 3095 2.58%

AA21 55 739 11.3%
AA22 62 908 11.0%
AA23 66 4999 13.6%
AA24 50 2707 16.8%
AA25 55 4999 15.8%
AA26 61 4522 13.3%
AA27 60 3954 13.2%
AA28 56 4999 15.3%
AA29 46 1681 17.7%
AA30 41 3334 21.3%

BUS1 454 2241 1.89%
BUS2 681 9524 0.51%
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were generated for the purposes of this study, and the last 25 are from Beasley

(87,90].

Table 2 describes the remaining 31 test problems, which have a real-world

origin. All but the last two of them are airline crew scheduling problems

kindly provided to us by American Airlines. The last two are bus driver sched-

uling problems originating with a Canadian consulting firm.

We first discuss our computational experience with DYNSGD as a stand-alone

heuristic.

Table 3 compares the performance of various primal heuristics with that of

the Dynamic Subgradient Procedure, in terms of the quality of the solutions they

produce. The comparison is made on the 35 problems of the sets BH4, BH5, BH6,

BC1 and BC2. The heuristics compared are the straight greedy with the choice

criterion cj/kj, the greedy run with 9 different criterion functions f(cj,kj)

followed by the choice of the best outcome, the randomized greedy run 30 times,

the reduced cost heuristic (RCH) run with the dual vector provided by SUBGRAD,

and finally the two versions of DYNSGRAD. The Dynamic Subgradient Procedure

found optimal solutions for 17 (Version 1), respectively for 21 (Version 2) of

the 35 test problems. In not a single problem did any of the other heuristics

find a better solution than Version 2 of DYNSGRAD, and only in 5 out of 35

problems did any of the other heuristics find a better solution than Version 1

of DYNSGRAD.

Table 4 compares the two versions of DYNSGRAD with the randomized greedy and

with the reduced cost heuristic run with the dual vector found by SUBGRAD, on

the 31 crew scheduling problems of the sets AA2-AAIO, AA11-AA20, AA21-AA30, and

BUS1-BUS2. DYNSGRAD found optimal solutions for 6 (Version 1), respectively 10

(Version 2) of the first 20 problems, and for all but one of the remaining

problems. The solution found by DYNSGRAD was in all cases better than the one

found by the randomized greedy, and in almost all the cases better than or equal
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Table 3. Value of covers found by various procedures

Greedy Greedy Randomized RCH DYNSGRAD
with best of 9 Greedy after

Problem cj/kj f(cj,kj) (30 runs) SUBGRAD Version I Version 2 Optimum

BH4.1 434 434 432 430 429' 429' 429
BH4.2 529 529 524 522 512* 512' 512
BH4.3 537 537 532 519 516' 516* 516
BH4.4 506 506 504 496 496 494* 494
BH4.5 518 518 518 512* 512' 512' 512
BH4.6 594 582 573 570 561 560* 560
BH4.7 447 447 445 430* 430' 430* 430
BH4.8 525 509 508 498 492' 492* 482
BH4.9 664 664 666 661 641' 641' 641
BH4.10 528 523 521 521 514' 514* 514

BH5.1 269 269 258 268 259 254 253
BH5.2 330 318 312 324 311 307 302
BH5.3 232 230 229 226 226' 226' 226
BH5.4 250 247 250 261 244 243 242
BH5.5 214 214 217 216 211' 211' 211
BH5.6 226 216 221 213 213' 213' 213
BH5.7 306 301 304 299 295 293* 293
BH5.8 311 305 307 292 289' .288* 288
BH5.9 292 285 281 282 2790 279' 279
BH5. 10 277 275 274 265 265' 265' 265

BH6.1 142 142 142 167 142 140 138
BH6.2 156 156 152 157 156 147 146
BH6.3 157 151 148 149 1450 145' 145
BH6.4 140 135 132 135 132 131' 131
BH6.5 186 181 176 181 170 163 161

BC1.1 50 49 54 48 47* 47
BC1.2 62 53 65 57 53* 53
BC1.3 58 58 58 58 56 55
BC1.4 43 43 42 41' 42 41
BC1.5 68 64 91 66 64 63

BC2.1 165 161 156 157 151 148
BC2.2 147 141 144 138' 141 138
BC2.3 156 154 158 152 151 149
BC2.4 176 177 173 173 168 167
BC2.5 149 149 146 149 143 140

*Optimal value
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Table 4. Value of covers found by four procedures

Randomized RCH DYNSGRAD
Greedy after

Problem (30 runs) SUBGRAD Version IjVersion 2 Optimum

AA2 34,812 31,753' 31,753' 31,753' 31,753
AA3 35,794 33,852 33,157 33,157 33,155
AA4 36,410 35,312 35,092 34,573' 34,573
AA5 32,616 31,623 32,144 31,623' 31,623
AA6 38,070 38,422 37,610 37,464* 37,464
AA7 37,479 35,545* 3 5 , 5 4 5o 35,545* 35,545
AA8 35,782 35,793' 34,731* 34,731' 34,731
AA9 36,230 34,295' 34,2950 34,295' 34,295
AA1O 37,181 35,332' 35,332' 35,332' 35,332

AAll 38,576 35,614 35,478 35,478 35,384
AA12 33,416 31,266 30,859 30,815 30,809
AA13 36,645 33,211' 33,211* 33,211' 33,211
AA14 35,369 33,702 33,279 33,222 33,219
AA15 36,964 34,999 34,667 34,510 34,409
AA16 35,801 33,968 32,858 32,858 32,752
AA17 36,405 31,737 31,737 31,717 31,612
AA18 39,663 38,296 36,850 36,866 36,782
AA19 36,067 33,012 32,593 32,317' 32,317
AA20 36,791 36,175 34,994 35,160 34,912

AA21 4,518 4,338' 4,338' 4,338
AA22 4,791 4,532' 4,532' 4,532
AA23 4,370 4,200' 4,200' 4,200
AA24 3,135 3,045' 3,045' 3,045
AA25 3,944 4,529 3,661' 3,661
AA26 4,095 4,242 4,071' 4,063
AA27 4,154 4,031 3,871' 3,871
AA28 3,598 3,829 3,571 3,530
AA29 3,066 2,870' 2,870' 2,870
AA30 2,842 2,701' 2,701' 2,701

BUS1 27,947 27,947 27,947
BUS2 68,732 67,868 67,760

"Optimal value
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to the solution found by the reduced cost heuristic applied after the standard

subgradient.

Table 5 compares the running times of the above heuristics. Version 1 of

DYNSGRAD took longer than greedy or RCH (even if the SGD time needed to find the

dual solution that RCH uses is added to its computing time). On the first four

problem sets it took less time than the randomized greedy, whereas on the last

two sets it took longer. In view of the superior quality of the solutions that

it finds, we must conclude that DYNSGRAD (Version 1) is to be preferred to the

other heuristics except in those cases where speed is decidedly more important

than solution quality. Version 2 in most cases took considerably longer than

the randomized greedy, but it obtained considerably better solutions than the

latter.

Finally, Table 6 compares the performance of the two versions of DYNSGRAD

with that of Beasley's Lagrangean heuristic on the problem sets BH4, 5, 6 and

BeA, B, C, D, E. The results for the first two Beasley columns are taken from

Beasley [90], except for problem set E (not treated in Beasley [901), for which

the results are from Beasley [87].

It is hard to make exact comparisons between computing times on different

computers. Nevertheless, we attempted to give an approximate idea of the rela-

tive magnitudes of the times reported. To do so, we used the report of Dongarra

[921 (Argonne National Laboratory), which compares the speed of several hundred

computers on the task of solving systems of linear equations. The column "TPP"

(Toward Peak Performance) of Table 1 of Dongarra's report contains the number of

Megaflops obtained as a result of programming efforts made to maximize the

performance of each type of computer. The corresponding entries for the Cray iS

and the VAX 6420 are 110 and 3, respectively. In Table 6 (and later in

Table 7) we use this ratio (110:3 = 36.67) to express the computing times on
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Table 5. Running Times (VAX 8650, CPU millisec.)

Greedy Randomized RCH DYNSGRAD
Reading with greedy after

Problem the Data cj/kj (30 runs) SUBGRAD SUBGRAD Version I Version 2

BH5.1 680 890 18,630 7,400 140 11,000 58,300
BHS.2 630 850 19,090 10,400 130 12,700 101,200
BH5.3 620 790 18,150 4,900 150 3,400 5,900
BH5.4 590 790 18,260 8,000 130 11,200 60,800
BH5.5 580 840 18,950 11,600 140 20,500 12,000
BH5.6 590 810 17,960 8,500 130 4,500 7,600
BH5.7 630 910 19,730 8,200 130 11,300 39,800
BH5.8 630 910 18,930 8,800 110 11,000 22,600
BH5.9 580 790 17,750 7,900 120 4,500 8,900
BH5.10 690 850 18,490 5,400 130 4,600 6,300

BH6.1 750 320 12,950 7,100 130 8,300 47,700
BH6.2 640 320 12,710 7,600 140 8,700 47,600
BH6.3 640 340 12,980 5,500 130 9,100 60,200
BH6.4 660 310 13,260 5,700 120 10,500 44,200
BH6.5 670 310 12,980 5,400 140 8,300 53,600

BCI.1 1230 290 21,000 7,700 250 7,200 21,100
BC1.2 1260 310 20,920 10,700 300 9,000 40,500
BC1.3 1210 330 20,970 8,700 290 7,600 34,300
BC1.4 1150 340 21,200 8,300 260 7,200 29,600
BC1.5 1180 310 20,560 9,300 250 11,000 43,100

BC2.1 2380 2650 65,160 28,900 510 39,600 261,900
BC2.2 2390 2470 63,950 26,200 620 33,500 269,000
BC2.3 2370 2780 66,000 27,400 470 28,800 265,300
BC2.4 2300 2910 66,250 26,000 480 33,900 277,000
BC2.5 2290 2680 65,210 28,300 490 32,000 295,400

AA11 2500 1890 51,800 29,800 570 89,500 390,000
AA12 2140 1710 47,530 33,500 540 56,700 264,600
AA13 1980 1650 47,270 19,800 540 11,700 107,100
AA14 2040 1590 46,440 28,000 490 125,300 470,000
AA15 2010 1690 44,650 31,400 490 76,000 218,400

AA16 2790 1510 43,470 26,800 380 119,700 284,700
AA17 2410 1530 41,650 17,300 390 49,800 243,200
AA18 2300 1590 42,240 27,700 360 66,700 336,300
AA19 1910 1370 38,580 26,400 440 34,500 140,000
AA20 2250 1300 37,440 24,300 340 45,800 174,400
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Table 6. The Two Versions of DYNSGRAD

Compared to Beasley's Lagrangean Heuristic

DYNSGRAD = Beasley

Time

Equivalent

Problem Version 1 Version 2 VAX6420 sec Optimal
(conversion Value

Value Time Value Time Cray 1S factort

= (VAX6420) V (VAX6420) Value sec 110/3)

BH4.1 429' 3.6 429' 4.8 429' 2.16 79.2 429
BH4.2 512' 3.2 512' 6.9 5120 2.18 79.9 512
BH4.3 516' 2.5 516' 5.9 516' 1.34 49.13 516
BH4.4 496 4.3 494' 9.8 495 2.39 87.6 494
BH4.5 512' 2.8 512' 3.2 512' 1.38 50.6 512
BH4.6 561 9.3 560' 40.5 561 3.11 114.0 560
BH4.7 430' 2.5 430' 5.8 430- 1.81 66.4 430
BH4.8 492' 9.2 492' 35.3 493 2.25 82.5 492
BH4.9 641' 8.0 641' 50.1 641' 4.04 148.13 641
BH4.10 5140 3.5 514' 6.3 514' 2.34 85.8 514

BH5.1 259 11.0 254 58.3 255 3.42 125.4 253
BH5.2 311 12.7 307 101.2 304 4.11 150.7 302
BH5.3 226' 3.4 226' 5.9 226' 1.98 72.6 226
BH5.4 244 11.2 243 60.8 242' 2.26 82.9 242
BH5.5 211' 20.5 211' 12.0 211' 1.42 52.1 211
BH5.6 2130 4.5 213' 7.6 213' 2.23 81.8 213
BH5.7 295 11.3 293' 39.8 294 3.55 130.2 293
BH5.8 289 11.0 288' 22.6 288' 4.06 148.9 288
BH5.9 279' 4.5 279' 8.9 279' 3.09 113.3 279
BH5.10 265' 4.6 265' 6.3 265' 1.93 70.8 265

BH6.1 142 8.3 140' 47.7 141' 3.30 121.0 138
BH6.2 156 8.7 147 47.6 146' 2.84 104.13 146
BH6.3 145' 9.1 145' 60.2 145' 2.94 107.8 145
BH6.4 132 10.5 131' 44.2 131' 2.02 74.1 131
BH6.5 170 8.3 163 53.6 162 2.61 95.7 161

tCrude approximation; see text for explanation

'Optimal value
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Table 6 (Cont-d)

DYNSGRAD Beasley

Time

Equivalent
Version 1 Version 2 VAX6420 sec

Problem (conversion Optimal

Value Time Value Time Cray 1S factort Value

(VAX6420) (VAX6420) Value sec 110/3)

BeA.1 261 27.4 258 177.4 255 7.08 259.6 253
BeA.2 257 25.0 254 186.1 256 8.69 318.6 252
BeA.3 243 20.7 237 130.0 234 5.52 202.4 232
BeA.4 241 19.1 235 165.1 235 6.58 241.3 234
BeA.5 237 23.0 236' 119.1 237 3.73 136.8 236

BeB.1 72 24.2 69' 131.9 70 5.58 204.6 69
BeB.2 78 27.2 76' 131.7 77 8.02 294.1 76
BeB.3 81 26.9 81 159.6 80' 5.00 183.3 80
BeB.4 83 26.1 79' 131.6 80 7.26 266.2 79
BeB.5 75 25.5 72' 148.0 72' 5.11 187.4 72

BeC.1 235 39.7 230 528.0 230 8.33 305.4 227
BeC.2 224 36.4 220 255.2 223 12.92 473.7 219
BeC.3 249 44.0 248 280.4 251 14.75 540.8 243
BeC.4 233 35.2 224 309.5 224 12.45 456.5 219
BeC.5 219 32.5 217 293.8 217 7.84 287.5 215

BeD.1 64 45.0 61 166.4 61 8.03 294.4 60
BeD.2 70 46.1 67 211.9 68 10.35 379.5 66
BeD.3 76 56.7 74 214.6 75 10.97 402.2 72
BeD.4 67 40.5 63 180.7 64 7.17 262.9 62
BeD.S 61' 46.9 61 164.5 62 7.22 264.7 61

BeE.1 5' 12.4 5' 32.4 5' 18.3 671.0 5
BeE.2 50 13.5 5' 42.4 5' 21.9 803.0 5
BeE.3 50 14.9 5' 36.9 50 23.5 861.7 5
BeE.4 6 3.4 5' 32.7 5' 19.5 715.0 5
BeE.5 5' 16.8 5' 35.8 5' 19.9 729.7 5

t Crude approximation; see text for explanation

"Optimal value
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the Cray IS in equivalent VAX 6420 times. This should be viewed as a very crude

approximation.

In terms of solution quality, Beasley and Version 2 of DYNSGRAD are both

clearly superior to Version 1 of DYNSGRAD, which in turn is about 7-15 times

faster than Version 2, and about 10-20 times faster than the Beasley code.

Version 2 of DYNSGRAD finds better solutions than Beasley's heuristic 17 times,

while Beasley's procedure finds better solutions 7 times. The computing effort

involved in Version 2 of DYNSGRAD is in most cases between 1/3 and 2/3 of the

effort involved in Beasley's code, except for the (dense) problems of class E,

where the comparison is made with Beasley [87] rather than [901 and where the

ratio is about 1 to 20.

Next we turn to our computational experience with the branch and bound

algorithm as a whole. As mentioned in section 8, Version 1 and Version 2 of

BR&BND differ only in the version of DYNSGRAD that they use.

Table 7 compares the two versions of our branch and bound algorithm with

the branch and bound algorithms of Fisher and Kedia [90], Beasley [87] and

Beasley and Jornsten [921, on the problem sets on which all four codes have been

run (BH4, 5 and 6); while Table 8 compares them with Beasley [87] and Beasley

and Jornsten [921 on the problems sets BeA, B, C, D and E. The data for the

Fisher-Kedia [901, Beasley [871 and Beasley-Jornsten [92] algorith...s come from

the papers cited, except for the columns titled "Equivalent VAX 6420 time,"

where we have used the conversion factors of 110/3 between the computing speed

of the Cray IS and that of the VAX 6420, and (2 x 184)/3 between that of the

Cray X-MP/28 and the VAX 6420 taken from Dongarra [92] as explained above.

Again, we remind the reader of the very crude nature of this approximation.

All the comparisons show that our branch and bound algorithm represents a

clear-out progress relative to the previous state of the art.

26



w ww w w ww w ww w ww wWWWWWW -,www

O'O'0%~.1 U11U WW

0 7

0.. *-N*6 a

N~6- 0.0 ww"0

* -16 a
-40~ %QC 1 'O ~ . N C6NP 'O~ 0 0 0-

o

F!~ JO O 0 '0.6 W

* 0 0
w

0*

0 0

-4) WN M~ 69- -aN0%
4 %Q~ 0% 0Q- V -

* 01 a >

-4 0
9 0

0 -0

%a~ a-0 owNw-

2096



wwwww~~ ww w ww w w ww ww w w w
00000 00000 0aa0 00 m0 0 00000w 30000.ý 01

0% 0

0 WJJ m.~.N W N~ w00du

-4 0 w
11 0

00

~~O~0Ox -O10~. 0

,.. 0

I-M

w-40 CR %a (n 0n 4.%0% -

toWJ to &4- W' W0%UW 000W m0 U m4 Nw-4Nt

-4 -4W NON V 0 M 0 %D 0 N -- %0 M -0 W -0 NN

N 0% -1 0 0~- w 4 W0% -4 M O 1O N0 0 U 0% & 90 c-
.~~~~ ~ ~ ~ ~ .NO . . . . . .

-J4O toWW 6 i -i.&m- w.06,i w0 W -4 W a0 -a.

-u at N.0 0 0 wwNN

0% WO 0W -4. m~1P CO w1J1 %0 0 0 FU 0 a

0 Co

- 0

cc ( w I 0 0W J ' NWWW ;a% .J L, 6~ f 0N 40

26b.



10. Conclusions

We have presented a new branch and bound algorithm for set covering, whose

main ingredient is an integrated upper bounding/lower bounding procedure applied

to a Lagrangean dual. This Dynamic Subgradient Procedure (DYNSGRAD) combines

the standard subgradlent method with primal and dual heuristics that change the

Lagrange multipliers, fix variables and restate the Lagrangean Itself during the

procedure. Extensive computational experience on randomly generated as well as

real-world set covering problems show superior performance of DYNSGRAD both as a

stand-alone heuristic, and as part of a branch and bound algorithm.

Experiments are under way with another version of DYNSGRAD and BR&BND, in

which the Lagrangean dual incorporates cutting planes that are guaranteed to

improve the lower bound. These, however, will be discussed in another paper.
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